viewing paste sha2.c | C++

Posted on the
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/* 
 * Copyright (c) 2004 Apple Computer, Inc. All Rights Reserved.
 * 
 * @APPLE_LICENSE_HEADER_START@
 * 
 * This file contains Original Code and/or Modifications of Original Code
 * as defined in and that are subject to the Apple Public Source License
 * Version 2.0 (the 'License'). You may not use this file except in
 * compliance with the License. Please obtain a copy of the License at
 * http://www.opensource.apple.com/apsl/ and read it before using this
 * file.
 * 
 * The Original Code and all software distributed under the License are
 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
 * Please see the License for the specific language governing rights and
 * limitations under the License.
 * 
 * @APPLE_LICENSE_HEADER_END@
 */
 
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 
 LICENSE TERMS
 
 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:
 
   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;
 
   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;
 
   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.
 
 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.
 
 DISCLAIMER
 
 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 26/08/2003
 
 This is a byte oriented version of SHA2 that operates on arrays of bytes
 stored in memory. This code implements sha256, sha384 and sha512 but the
 latter two functions rely on efficient 64-bit integer operations that
 may not be very efficient on 32-bit machines
 
 The sha256 functions use a type 'sha256_ctx' to hold details of the
 current hash state and uses the following three calls:
 
       void sha256_begin(sha256_ctx ctx[1])
       void sha256_hash(const unsigned char data[],
                            unsigned long len, sha256_ctx ctx[1])
       void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
 
 The first subroutine initialises a hash computation by setting up the
 context in the sha256_ctx context. The second subroutine hashes 8-bit
 bytes from array data[] into the hash state withinh sha256_ctx context,
 the number of bytes to be hashed being given by the the unsigned long
 integer len.  The third subroutine completes the hash calculation and
 places the resulting digest value in the array of 8-bit bytes hval[].
 
 The sha384 and sha512 functions are similar and use the interfaces:
 
       void sha384_begin(sha384_ctx ctx[1]);
       void sha384_hash(const unsigned char data[],
                            unsigned long len, sha384_ctx ctx[1]);
       void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
 
       void sha512_begin(sha512_ctx ctx[1]);
       void sha512_hash(const unsigned char data[],
                            unsigned long len, sha512_ctx ctx[1]);
       void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
 
 In addition there is a function sha2 that can be used to call all these
 functions using a call with a hash length parameter as follows:
 
       int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
       void sha2_hash(const unsigned char data[],
                            unsigned long len, sha2_ctx ctx[1]);
       void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
 
 My thanks to Erik Andersen <[email protected]> for testing this code
 on big-endian systems and for his assistance with corrections
*/
 
/*
 * Apple: Measurements indicate that we get both smaller code size and faster
 * performance when compiling this file with -O1 than with either -O3 or -Os.
 *
 * -O1
 * sha2.o 18652 bytes of text
 * 7.509 seconds to digest 100000000 bytes with SHA512
 *
 * -Os
 * sha2.o 19552 bytes of text
 * 8.693 seconds to process 100000000 bytes
 * 
 * -O3
 * sha2.o 20452 bytes of text
 * 8.535 seconds to process 100000000 bytes
 *
 * #defining UNROOL_SHA2 leads to no noticable improvement. 
 */
#include "sha2Priv.h"   /* Apple Common Digest version */
 
/* define the hash functions that you need          */
 
#ifndef APPLE_COMMON_DIGEST
#define SHA_2           /* for dynamic hash length  */
#define SHA_224
#endif  /* APPLE_COMMON_DIGEST */
#define SHA_256
#define SHA_384
#define SHA_512
 
#if 0
#define UNROLL_SHA2     /* for SHA2 loop unroll     */
#endif
 
#include <string.h>     /* for memcpy() etc.        */
#include <stdlib.h>     /* for _lrotr with VC++     */
 
/* #include "sha2.h" */
 
#if defined(__cplusplus)
extern "C"
{
#endif
 
/*  PLATFORM SPECIFIC INCLUDES AND BYTE ORDER IN 32-BIT WORDS
 
    To obtain the highest speed on processors with 32-bit words, this code
    needs to determine the byte order of the target machine. The following
    block of code is an attempt to capture the most obvious ways in which
    various environemnts define byte order. It may well fail, in which case
    the definitions will need to be set by editing at the points marked
    **** EDIT HERE IF NECESSARY **** below.  My thanks go to Peter Gutmann
    for his assistance with this endian detection nightmare.
*/
 
#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */
 
#if defined(__GNUC__) || defined(__GNU_LIBRARY__)
#  if defined(__FreeBSD__) || defined(__OpenBSD__)
#    include <sys/endian.h>
#  elif defined( BSD ) && ( BSD >= 199103 )
#      include <machine/endian.h>
#  elif defined(__APPLE__)
#    if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
#      define BIG_ENDIAN
#    elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
#      define LITTLE_ENDIAN
#    endif
#  else
#    include <endian.h>
#    if !defined(__BEOS__)
#      include <byteswap.h>
#    endif
#  endif
#endif
 
#if !defined(PLATFORM_BYTE_ORDER)
#  if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
#    if    defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(LITTLE_ENDIAN) &&  defined(BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    endif
#  elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
#    if    defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(_LITTLE_ENDIAN) &&  defined(_BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#   endif
#  elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
#    if    defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(__LITTLE_ENDIAN__) &&  defined(__BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    endif
#  endif
#endif
 
/*  if the platform is still unknown, try to find its byte order    */
/*  from commonly used machine defines                              */
 
#if !defined(PLATFORM_BYTE_ORDER)
 
#if   defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       || \
      defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    || \
      defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) || \
      defined( vax )       || defined( vms )     || defined( VMS )        || \
      defined( __VMS )
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
 
#elif defined( AMIGA )    || defined( applec )  || defined( __AS400__ )  || \
      defined( _CRAY )    || defined( __hppa )  || defined( __hp9000 )   || \
      defined( ibm370 )   || defined( mc68000 ) || defined( m68k )       || \
      defined( __MRC__ )  || defined( __MVS__ ) || defined( __MWERKS__ ) || \
      defined( sparc )    || defined( __sparc)  || defined( SYMANTEC_C ) || \
      defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
 
#elif 0     /* **** EDIT HERE IF NECESSARY **** */
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#elif 0     /* **** EDIT HERE IF NECESSARY **** */
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#else
#  error Please edit sha2.c (line 184 or 186) to set the platform byte order
#endif
 
#endif
 
#ifdef _MSC_VER
#pragma intrinsic(memcpy)
#endif
 
#if 0 && defined(_MSC_VER)
#define rotl32 _lrotl
#define rotr32 _lrotr
#else
#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
#endif
 
#if !defined(bswap_32)
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
#endif
 
#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif
 
#if 0
 
#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 
#else   /* Thanks to Rich Schroeppel and Colin Plumb for the following      */
 
#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
 
#endif
 
/* round transforms for SHA256 and SHA512 compression functions */
 
#define vf(n,i) v[(n - i) & 7]
 
#define hf(i) (p[i & 15] += \
    g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
 
#define v_cycle(i,j)                                \
    vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j]        \
    + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \
    vf(3,i) += vf(7,i);                             \
    vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
 
#if defined(SHA_224) || defined(SHA_256)
 
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
 
#if defined(SWAP_BYTES)
#define bsw_32(p,n) \
    { int _i = (n); while(_i--) ((sha2_32t*)p)[_i] = bswap_32(((sha2_32t*)p)[_i]); }
#else
#define bsw_32(p,n)
#endif
 
#define s_0(x)  (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22))
#define s_1(x)  (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25))
#define g_0(x)  (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3))
#define g_1(x)  (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
#define k_0     k256
 
/* rotated SHA256 round definition. Rather than swapping variables as in    */
/* FIPS-180, different variables are 'rotated' on each round, returning     */
/* to their starting positions every eight rounds                           */
 
#define q(n)  v##n
 
#define one_cycle(a,b,c,d,e,f,g,h,k,w)  \
    q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
    q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
 
/* SHA256 mixing data   */
 
static const sha2_32t k256[64] =
{   0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
    0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
    0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
    0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
    0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
    0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
    0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
    0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
    0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
    0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
    0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
    0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
    0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
    0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
    0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
    0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
};
 
/* Compile 64 bytes of hash data into SHA256 digest value   */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems              */
 
static sha2_void sha256_compile(sha256_ctx ctx[1])
{
#if !defined(UNROLL_SHA2)
 
    sha2_32t j, *p = ctx->wbuf, v[8];
 
    memcpy(v, ctx->hash, 8 * sizeof(sha2_32t));
 
    for(j = 0; j < 64; j += 16)
    {
        v_cycle( 0, j); v_cycle( 1, j);
        v_cycle( 2, j); v_cycle( 3, j);
        v_cycle( 4, j); v_cycle( 5, j);
        v_cycle( 6, j); v_cycle( 7, j);
        v_cycle( 8, j); v_cycle( 9, j);
        v_cycle(10, j); v_cycle(11, j);
        v_cycle(12, j); v_cycle(13, j);
        v_cycle(14, j); v_cycle(15, j);
    }
 
    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
 
#else
 
    sha2_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
 
    v0 = ctx->hash[0]; v1 = ctx->hash[1];
    v2 = ctx->hash[2]; v3 = ctx->hash[3];
    v4 = ctx->hash[4]; v5 = ctx->hash[5];
    v6 = ctx->hash[6]; v7 = ctx->hash[7];
 
    one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
    one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
    one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
    one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
    one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
    one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
    one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
    one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
    one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
    one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
    one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
    one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
    one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
    one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
    one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
    one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
 
    one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
 
    one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
 
    one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
 
    ctx->hash[0] += v0; ctx->hash[1] += v1;
    ctx->hash[2] += v2; ctx->hash[3] += v3;
    ctx->hash[4] += v4; ctx->hash[5] += v5;
    ctx->hash[6] += v6; ctx->hash[7] += v7;
#endif
}
 
/* SHA256 hash data in an array of bytes into hash buffer   */
/* and call the hash_compile function as required.          */
#if     APPLE_COMMON_DIGEST
int CC_SHA256_Update(CC_SHA256_CTX *ctx, const void *data, CC_LONG len)
#else
sha2_void sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
#endif  /* APPLE_COMMON_DIGEST */
{   sha2_32t pos = (sha2_32t)(ctx->count[0] & SHA256_MASK),
             space = SHA256_BLOCK_SIZE - pos;
    const unsigned char *sp = data;
 
    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);
 
    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
        bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
        sha256_compile(ctx);
    }
 
    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
    return 1;
}
 
/* SHA256 Final padding and digest calculation  */
 
static sha2_void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
{   sha2_32t    i = (sha2_32t)(ctx->count[0] & SHA256_MASK);
 
    /* put bytes in the buffer in an order in which references to   */
    /* 32-bit words will put bytes with lower addresses into the    */
    /* top of 32 bit words on BOTH big and little endian machines   */
    bsw_32(ctx->wbuf, (i + 3) >> 2)
 
    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary. Note that */
    /* we can always add the first padding byte here because the    */
    /* buffer always has at least one empty slot                    */
    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
 
    /* we need 9 or more empty positions, one for the padding byte  */
    /* (above) and eight for the length count.  If there is not     */
    /* enough space pad and empty the buffer                        */
    if(i > SHA256_BLOCK_SIZE - 9)
    {
        if(i < 60) ctx->wbuf[15] = 0;
        sha256_compile(ctx);
        i = 0;
    }
    else    /* compute a word index for the empty buffer positions  */
        i = (i >> 2) + 1;
 
    while(i < 14) /* and zero pad all but last two positions        */
        ctx->wbuf[i++] = 0;
 
    /* the following 32-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 32-bit      */
    /* word values.                                                 */
    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
    ctx->wbuf[15] = ctx->count[0] << 3;
    sha256_compile(ctx);
 
    /* extract the hash value as bytes in case the hash buffer is   */
    /* mislaigned for 32-bit words                                  */
    for(i = 0; i < hlen; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
}
 
#endif
 
#if defined(SHA_224)
 
const sha2_32t i224[8] =
{
    0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
    0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
};
 
sha2_void sha224_begin(sha224_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i224, 8 * sizeof(sha2_32t));
}
 
sha2_void sha224_end(unsigned char hval[], sha224_ctx ctx[1])
{
    sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
}
 
sha2_void sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha224_ctx  cx[1];
 
    sha224_begin(cx);
    sha224_hash(data, len, cx);
    sha_end1(hval, cx, SHA224_DIGEST_SIZE);
}
 
#endif
 
#if defined(SHA_256)
 
static const sha2_32t i256[8] =
{
    0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
    0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
};
 
int sha256_begin(sha256_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i256, 8 * sizeof(sha2_32t));
    return 1;
}
 
int sha256_end(unsigned char hval[], sha256_ctx ctx[1])
{
    sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
    return 1;
}
 
#ifndef APPLE_COMMON_DIGEST
sha2_void sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha256_ctx  cx[1];
 
    sha256_begin(cx);
    sha256_hash(data, len, cx);
    sha_end1(hval, cx, SHA256_DIGEST_SIZE);
}
#endif  /* APPLE_COMMON_DIGEST */
 
#endif
 
#if defined(SHA_384) || defined(SHA_512)
 
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
 
#define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))
 
#if !defined(bswap_64)
#define bswap_64(x) (((sha2_64t)(bswap_32((sha2_32t)(x)))) << 32 | bswap_32((sha2_32t)((x) >> 32)))
#endif
 
#if defined(SWAP_BYTES)
#define bsw_64(p,n) \
    { int _i = (n); while(_i--) ((sha2_64t*)p)[_i] = bswap_64(((sha2_64t*)p)[_i]); }
#else
#define bsw_64(p,n)
#endif
 
/* SHA512 mixing function definitions   */
 
#ifdef   s_0
# undef  s_0
# undef  s_1
# undef  g_0
# undef  g_1
# undef  k_0
#endif
 
#define s_0(x)  (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define s_1(x)  (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define g_0(x)  (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7))
#define g_1(x)  (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6))
#define k_0     k512
 
/* SHA384/SHA512 mixing data    */
 
static const sha2_64t  k512[80] =
{
    0x428a2f98d728ae22ull, 0x7137449123ef65cdull,
    0xb5c0fbcfec4d3b2full, 0xe9b5dba58189dbbcull,
    0x3956c25bf348b538ull, 0x59f111f1b605d019ull,
    0x923f82a4af194f9bull, 0xab1c5ed5da6d8118ull,
    0xd807aa98a3030242ull, 0x12835b0145706fbeull,
    0x243185be4ee4b28cull, 0x550c7dc3d5ffb4e2ull,
    0x72be5d74f27b896full, 0x80deb1fe3b1696b1ull,
    0x9bdc06a725c71235ull, 0xc19bf174cf692694ull,
    0xe49b69c19ef14ad2ull, 0xefbe4786384f25e3ull,
    0x0fc19dc68b8cd5b5ull, 0x240ca1cc77ac9c65ull,
    0x2de92c6f592b0275ull, 0x4a7484aa6ea6e483ull,
    0x5cb0a9dcbd41fbd4ull, 0x76f988da831153b5ull,
    0x983e5152ee66dfabull, 0xa831c66d2db43210ull,
    0xb00327c898fb213full, 0xbf597fc7beef0ee4ull,
    0xc6e00bf33da88fc2ull, 0xd5a79147930aa725ull,
    0x06ca6351e003826full, 0x142929670a0e6e70ull,
    0x27b70a8546d22ffcull, 0x2e1b21385c26c926ull,
    0x4d2c6dfc5ac42aedull, 0x53380d139d95b3dfull,
    0x650a73548baf63deull, 0x766a0abb3c77b2a8ull,
    0x81c2c92e47edaee6ull, 0x92722c851482353bull,
    0xa2bfe8a14cf10364ull, 0xa81a664bbc423001ull,
    0xc24b8b70d0f89791ull, 0xc76c51a30654be30ull,
    0xd192e819d6ef5218ull, 0xd69906245565a910ull,
    0xf40e35855771202aull, 0x106aa07032bbd1b8ull,
    0x19a4c116b8d2d0c8ull, 0x1e376c085141ab53ull,
    0x2748774cdf8eeb99ull, 0x34b0bcb5e19b48a8ull,
    0x391c0cb3c5c95a63ull, 0x4ed8aa4ae3418acbull,
    0x5b9cca4f7763e373ull, 0x682e6ff3d6b2b8a3ull,
    0x748f82ee5defb2fcull, 0x78a5636f43172f60ull,
    0x84c87814a1f0ab72ull, 0x8cc702081a6439ecull,
    0x90befffa23631e28ull, 0xa4506cebde82bde9ull,
    0xbef9a3f7b2c67915ull, 0xc67178f2e372532bull,
    0xca273eceea26619cull, 0xd186b8c721c0c207ull,
    0xeada7dd6cde0eb1eull, 0xf57d4f7fee6ed178ull,
    0x06f067aa72176fbaull, 0x0a637dc5a2c898a6ull,
    0x113f9804bef90daeull, 0x1b710b35131c471bull,
    0x28db77f523047d84ull, 0x32caab7b40c72493ull,
    0x3c9ebe0a15c9bebcull, 0x431d67c49c100d4cull,
    0x4cc5d4becb3e42b6ull, 0x597f299cfc657e2aull,
    0x5fcb6fab3ad6faecull, 0x6c44198c4a475817ull
};
 
/* Compile 128 bytes of hash data into SHA384/512 digest    */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems              */
 
static sha2_void sha512_compile(sha512_ctx ctx[1])
{   sha2_64t    v[8], *p = ctx->wbuf;
    sha2_32t    j;
 
    memcpy(v, ctx->hash, 8 * sizeof(sha2_64t));
 
    for(j = 0; j < 80; j += 16)
    {
        v_cycle( 0, j); v_cycle( 1, j);
        v_cycle( 2, j); v_cycle( 3, j);
        v_cycle( 4, j); v_cycle( 5, j);
        v_cycle( 6, j); v_cycle( 7, j);
        v_cycle( 8, j); v_cycle( 9, j);
        v_cycle(10, j); v_cycle(11, j);
        v_cycle(12, j); v_cycle(13, j);
        v_cycle(14, j); v_cycle(15, j);
    }
 
    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}
 
/* Compile 128 bytes of hash data into SHA256 digest value  */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is in such an order that low   */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big  */
/* and little endian systems                                */
 
#ifdef  APPLE_COMMON_DIGEST
int CC_SHA512_Update(CC_SHA512_CTX *ctx, const void *data, CC_LONG len)
#else
sha2_void sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
#endif
{   sha2_32t pos = (sha2_32t)(ctx->count[0] & SHA512_MASK),
             space = SHA512_BLOCK_SIZE - pos;
    const unsigned char *sp = data;
 
    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);
 
    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
        bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
        sha512_compile(ctx);
    }
 
    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
    return 1;
}
 
/* SHA384/512 Final padding and digest calculation  */
 
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
{   sha2_32t    i = (sha2_32t)(ctx->count[0] & SHA512_MASK);
 
    /* put bytes in the buffer in an order in which references to   */
    /* 32-bit words will put bytes with lower addresses into the    */
    /* top of 32 bit words on BOTH big and little endian machines   */
    bsw_64(ctx->wbuf, (i + 7) >> 3);
 
    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary. Note that */
    /* we can always add the first padding byte here because the    */
    /* buffer always has at least one empty slot                    */
    ctx->wbuf[i >> 3] &= 0xffffffffffffff00ull << 8 * (~i & 7);
    ctx->wbuf[i >> 3] |= 0x0000000000000080ull << 8 * (~i & 7);
 
    /* we need 17 or more empty byte positions, one for the padding */
    /* byte (above) and sixteen for the length count.  If there is  */
    /* not enough space pad and empty the buffer                    */
    if(i > SHA512_BLOCK_SIZE - 17)
    {
        if(i < 120) ctx->wbuf[15] = 0;
        sha512_compile(ctx);
        i = 0;
    }
    else
        i = (i >> 3) + 1;
 
    while(i < 14)
        ctx->wbuf[i++] = 0;
 
    /* the following 64-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 64-bit      */
    /* word values.                                                 */
    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
    ctx->wbuf[15] = ctx->count[0] << 3;
    sha512_compile(ctx);
 
    /* extract the hash value as bytes in case the hash buffer is   */
    /* misaligned for 32-bit words                                  */
    for(i = 0; i < hlen; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
}
 
#endif
 
#if defined(SHA_384)
 
/* SHA384 initialisation data   */
 
static const sha2_64t  i384[80] =
{
    0xcbbb9d5dc1059ed8ull, 0x629a292a367cd507ull,
    0x9159015a3070dd17ull, 0x152fecd8f70e5939ull,
    0x67332667ffc00b31ull, 0x8eb44a8768581511ull,
    0xdb0c2e0d64f98fa7ull, 0x47b5481dbefa4fa4ull
};
 
#if APPLE_COMMON_DIGEST
int sha384_begin(sha384_ctx *ctx)
#else
sha2_void sha384_begin(sha384_ctx ctx[1])
#endif
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i384, 8 * sizeof(sha2_64t));
    return 1;
}
 
#if APPLE_COMMON_DIGEST
int sha384_end(unsigned char *hval, sha384_ctx *ctx)
#else
sha2_void sha384_end(unsigned char hval[], sha384_ctx ctx[1])
#endif
{
    sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
    return 1;
}
 
/* provide an actual entry for this instead of #defining it */
extern int CC_SHA384_Update(CC_SHA512_CTX *c, const void *data, CC_LONG len)
{
    return CC_SHA512_Update(c, data, len);
}
 
 
#ifndef APPLE_COMMON_DIGEST
sha2_void sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha384_ctx  cx[1];
 
    sha384_begin(cx);
    sha384_hash(data, len, cx);
    sha_end2(hval, cx, SHA384_DIGEST_SIZE);
}
#endif  /* APPLE_COMMON_DIGEST */
#endif
 
#if defined(SHA_512)
 
/* SHA512 initialisation data   */
 
static const sha2_64t  i512[80] =
{
    0x6a09e667f3bcc908ull, 0xbb67ae8584caa73bull,
    0x3c6ef372fe94f82bull, 0xa54ff53a5f1d36f1ull,
    0x510e527fade682d1ull, 0x9b05688c2b3e6c1full,
    0x1f83d9abfb41bd6bull, 0x5be0cd19137e2179ull
};
 
#ifdef APPLE_COMMON_DIGEST
int sha512_begin(sha512_ctx *ctx)
#else
sha2_void sha512_begin(sha512_ctx ctx[1])
#endif
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i512, 8 * sizeof(sha2_64t));
    return 1;
}
 
#ifdef APPLE_COMMON_DIGEST
int sha512_end(unsigned char *hval, sha512_ctx *ctx)
#else
sha2_void sha512_end(unsigned char hval[], sha512_ctx ctx[1])
#endif
{
    sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
    return 1;
}
 
#ifndef APPLE_COMMON_DIGEST
sha2_void sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha512_ctx  cx[1];
 
    sha512_begin(cx);
    sha512_hash(data, len, cx);
    sha_end2(hval, cx, SHA512_DIGEST_SIZE);
}
#endif  /* APPLE_COMMON_DIGEST */
 
#endif
 
#if defined(SHA_2)
 
#define CTX_224(x)  ((x)->uu->ctx256)
#define CTX_256(x)  ((x)->uu->ctx256)
#define CTX_384(x)  ((x)->uu->ctx512)
#define CTX_512(x)  ((x)->uu->ctx512)
 
/* SHA2 initialisation */
 
sha2_int sha2_begin(unsigned long len, sha2_ctx ctx[1])
{   unsigned long   l = len;
    switch(len)
    {
#if defined(SHA224)
        case 224:
        case  28:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
                    memcpy(CTX_256(ctx)->hash, i224, 32);
                    ctx->sha2_len = 28; return SHA2_GOOD;
#endif
#if defined(SHA256)
        case 256:
        case  32:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
                    memcpy(CTX_256(ctx)->hash, i256, 32);
                    ctx->sha2_len = 32; return SHA2_GOOD;
#endif
#if defined(SHA384)
        case 384:
        case  48:   CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
                    memcpy(CTX_384(ctx)->hash, i384, 64);
                    ctx->sha2_len = 48; return SHA2_GOOD;
#endif
#if defined(SHA512)
        case 512:
        case  64:   CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
                    memcpy(CTX_512(ctx)->hash, i512, 64);
                    ctx->sha2_len = 64; return SHA2_GOOD;
#endif
        default:    return SHA2_BAD;
    }
}
 
sha2_void sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
#if defined(SHA224)
        case 28: sha224_hash(data, len, CTX_224(ctx)); return;
#endif
#if defined(SHA256)
        case 32: sha256_hash(data, len, CTX_256(ctx)); return;
#endif
#if defined(SHA384)
        case 48: sha384_hash(data, len, CTX_384(ctx)); return;
#endif
#if defined(SHA512)
        case 64: sha512_hash(data, len, CTX_512(ctx)); return;
#endif
    }
}
 
sha2_void sha2_end(unsigned char hval[], sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
#if defined(SHA224)
        case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
#endif
#if defined(SHA256)
        case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
#endif
#if defined(SHA384)
        case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
#endif
#if defined(SHA512)
        case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
#endif
    }
}
 
sha2_int sha2(unsigned char hval[], unsigned long size,
                                const unsigned char data[], unsigned long len)
{   sha2_ctx    cx[1];
 
    if(sha2_begin(size, cx) == SHA2_GOOD)
    {
        sha2_hash(data, len, cx); sha2_end(hval, cx); return SHA2_GOOD;
    }
    else
        return SHA2_BAD;
}
 
#endif  /* SHA2 */
 
#if defined(__cplusplus)
}
#endif
Viewed 761 times, submitted by Guest.